ITU's IMT-2020 defined 5G. 2030 could have the same effect on what comes next. The group welcomes new members. If you understand the issues and can present them articulately, you will be heard. October 2nd is an open workshop, the 3rd and 4th a Focus Group open to new members.

I've been surprised how much impact a thoughtful person can make at ITU, If you can't come to New York, written presentations are welcome. The number submitted hasn't been overwhelming so they will be read.

Below are some suggestions I made about keeping costs and royalties down, sharing spectrum including with Wi-Fi, and promoting competition. Historically, Latin America, Africa and South Asia have been under-represented. We must include their needs, Most of Africa is off the grid; a low energy option is required. 

In addition, I will print any short suggestions you send me daveb@dslprime.com and bring them to the meeting. If the Chair finds time, I'll present them. Otherwise, I'll leave printouts and help you post them. 

The FCC and OFCOM are similar, if you take the time to learn the system. I speak from experience. It's not a place to argue the virtues of net neutrality, censorship, or competition, but it is appropriate to discuss whether the technical suggestions have a negative affect on these issues. 

Some of the speakers will be very technical. I'm a geek; if you're not, the meeting will probably not interest you. Most of the people will be pros informed by decades of experience. It will be a great place if you want to be on the bleeding edge.

See you there.

First Workshop on Network 2030  will take place on 2 October 2018, in New York, followed by the inaugural meeting of the ITU-T Focus Group on Technologies for Network 2030 (FG NET-2030) https://www.itu.int/en/ITU-T/focusgroups/net2030/Pages/default.aspx.

Dave's suggestions for discussion

 

People more qualified than I will be discussing possibilities like terahertz spectrum and microscopic antennae. What I want to do is put some questions on the table crucial to the cost of access and deploying everywhere. These are questions, not conclusive opinions. The groups making standards very rarely have considered the requirements of the developing world, which include low costs and simple deployment.

Some issues that might arise in coming wireless networks include:

  1. Possible obstacles to shared, multi-tenant systems. Consider a rural road system which requires many small cells. In many cases, it's unrealistic for three or four wireless networks to build separately. Sharing networks has become common from Canada to England to India. Fewer towers also means less pollution.
    One network is cheaper than two. Two is cheaper than the four to seven often required for strong competition.
  2. Requirements in the standard that drive up costs significantly without benefits for all. While some countries and carriers can afford networks with expensive features, others are held back by the expense. Simpler networks are cheaper to build and to operate. Costly advanced features could be made optional. Huawei has been working on inexpensive units easily deployable. Bringing down the costs is particularly important in less developed areas. In practice, nearly all standards have been controlled by developed countries and CJK. I believe the interests of other countries should come to the heart of the discussion, ideally by stronger participation from around the world.
  3. Coexistence and efficient coordination with other technologies that share the medium. In particular, Wi-Fi and 4G/5G may share spectrum. There are major efficiencies to use the cloud to reduce interference, often requiring information about the environment. A way for both to communicate would have substantial advantages. Currently, 3GPP and 802.11 have battled over how to keep out of each others' way in 4G & 5G. Both lose capacity. Twelve years should be enough to move from theoretical discussions to field deployments. 
  4. Low energy requirements. The majority of Africa is not covered by electric grids, nor are many sparsely populated rural areas in the developed world. Systems that can work with solar power are ideal. All energy reductions are important and reduce costs.
  5. Royalties should be reasonable. While there is no international standard, I believe ITU Secretary-General Hamadoun Touré's suggestion of 5-10% for the total retail price is a good guideline. This is particularly relevant to high volume communication devices, such as cell phones. Three years ago, Carlos Slim told me US$50 smartphones would connect the next two billion people. The current royalties demanded would raise the retail cost by at least half. Korea and China have ruled that Qualcomm royalties disrupted crucial markets and Qualcomm has since paid US$1 billion in fines. Qualcomm has since raised the royalty rate from 3.3% to 5%. Clearly, the existing ITU/3GPP system to ensure reasonable royalties is insufficient. The IEEE system that bases royalties on the price of the relevant part (e.g. a 4G chip) rather than the the total price of the cellphone is an interesting approach, but far from sufficient. Standards already consider whether a proposal unreasonably raises costs. High royalties need to be part of that discussion. (They may require a new understanding of competition policy but that needs to be reconsidered.)
  6. SDN, NFV, and Open Source are proving to reduce network costs. Technology submissions should clearly be able to function in a vendor neutral network. Whether that should be implemented with YANG models, Open Daylight, CORD or whatever, the capability must be there.
  7. Standards-based networks must be deployable by more than a very few big companies. 3GPP, ATIS, and the companies involved probably breached competition law with 5G NSA. They wanted something giant telcos could deploy two years before the complete 5G standard would be ready. 3GPP hived off the air interface and some mmWave solutions into the 5G NSA release. For practical purposes, 5G NSA could not be deployed except by those with a 4G network in place. In many countries, that meant only 3 or 4 giants. New entrants were essentially impossible.

 

dave ask

Newsfeed

Vivo is selling new the iQOO 5G premium quality phone for US$536.

Lei Jun Xiaomi "5G to have explosive growth starting from Q2 2020"5G to have explosive growth starting from Q2 2020" I say sooner

Verizon CEO Ronan Dunne: >1/2 VZ 5G "will approximate to a good 4G service" Midband in "low hundreds" Mbps

CFO John Stephens says AT&T is going to cut capex soon.

Bharti in India has lost 45M customers who did not want to pay the minimum USS2/month. It's shutting down 3G to free some spectrum for 4G. It is cutting capex, dangerous when the 12 gigabytes/month of use continues to rise.

Huawei in 16 days sold 1,000,000 5G Mate 20s.  

China has over 50,000 upgraded base stations and may have more than 200,000 by yearend 2019. The growth is astonishing and about to accelerate. China will have more 5G than North America and Europe combined for several years.

5G phone prices are down to $580 in China from Oppo. Headed under $300 in 2020 and driving demand.

No one believed me when I wrote in May, 90% of Huawei U.S. purchases can be rapidly replaced and that Huawei would survive and thrive. Financial results are in, with 23% growth and increased phone sales. It is spending $17B on research in 2019, up > 10%. 

5G phones spotted from Sharp and Sony

NTT DOCOMO will begin "pre-commercial service Sept 20 with over 100 live bases. Officially, the commercial start is 2020.

 More newsfeed

----------

Welcome  1,800,000 Koreans bought 5G in the first four months. The demand is there, and most of the technology works. Meanwhile, the hype is unreal. Time for reporting closer to the truth.

The estimates you hear about 5G costs are wildly exaggerated. Verizon is building the most advanced wireless network while reducing capex. Deutsche Telekom and Orange/France Telecom also confirm they won't raise capex.

Massive MIMO in either 4G or "5G" can increase capacity 3X to 7X, including putting 2.3 GHz to 4.2 GHz to use. Carrier Aggregation, 256 QAM, and other tools double and triple that. Verizon sees cost/bit dropping 40% per year.

Cisco & others see traffic growth slowing to 30%/year or less.  I infer overcapacity almost everywhere.  

Believe it or not, 80+% of 5G (mid-band) for several years will be slower than good 4G, which is more developed.