Avenida Houston 230Verizon 5G reach is perhaps twice as far as expected, including with obstacles (NLOS.) That's the independent conclusion of Michael Thelander and team testing two live Verizon cells in Houston,

"Who would have thought a millimeter wave signal in an area 100% blocked from the serving cell tower by the surroundings would still be capable of supporting good data speeds?" they exclaim. "Millimeter wave signals are far more resilient than we expected, even at distances exceeding several thousand feet. Tree foliage, passing school buses, buildings, parked cars, balding heads, and glass impacted the received signal, but the resultant signals were still capable of delivering meaningful data rates – thanks in part to the 400 MHz radio channel. Verizon can deploy 800 MHz channels in some markets." The results were generally good up to 1,000 meters and behind buildings.

At MWC Barcelona next week, there will be dozens of analyses on mmWave costs and buildout requirements. Nearly all of them will assume reach of 200-300 meters. That would require at least hundreds of thousands of cells to cover the U.S. and probably millions.

They probably are wrong.

We don't have conclusive data yet, of course. Verizon reports, getting a median gigabit 600 meters with still very early equipment.  "Every variable tested during the trials came out better than assumed." 

Primary details below, The full Signals Research report is for sale (not cheap,) They have a short but interesting video showing the actual tests, but they are keeping

Thanks to Monica Alleven of Fierce for pointing me to this data. She and colleagues Mike Dano & Sean Buckley are among the best.

 

Here's the SR promotion

Key Highlights from this 5G Speed Study

Signals Research Group (SRG) conducted what we believe is the industry’s first independent benchmark study of a 5G commercial test network. We conducted tests in Houston, Texas where Verizon Wireless has a 28 GHz trial network that we believe is now supporting commercial traffic. Samsung is the infrastructure supplier in this market. For this study, we used the Rohde & Schwarz TSMA autonomous drive test scanner to collect downlink performance metrics for the Beam Reference Signals (BRS), including RSRP, CINR, RSRQ, PCI, etc., of the 28 GHz millimeter wave radio signals. With this information, we could also estimate likely end-user data rates for the areas and locations we tested. Although Verizon is currently using the 5GTF specification, we believe the data we collected and the results we conclude from the analysis of the data are equally applicable to the 5G NR specifications, not to mention limited mobility use cases. Based on numerous walk tests and stationary tests involving line-of-site (LOS), non-lineof-site (NLOS) and near-line-of-site conditions, we have a great appreciation for the promises of millimeter wave spectrum. To summarize, millimeter wave signals are far more resilient than we expected, even at distances exceeding several thousand feet. Tree foliage, passing school buses, buildings, parked cars, balding heads, and glass impacted the received signal, but the resultant signals were still capable of delivering meaningful data rates – thanks in part to the 400 MHz radio channel. Verizon can deploy 800 MHz channels in some markets. Who would have thought a millimeter wave signal in an area 100% blocked from the serving cell tower by the surroundings would still be capable of supporting good data speeds? Verizon management is on record for “promising” Gigabit speeds to its serviced customers. We don’t yet share this view with near-term deployments unless Verizon aggressively deploys 5GTF small cells (i.e., brings the consumer and the 5G access point closer together), and/or mounts CPEs in ideal exterior locations, and/or limits its customers to only those customers that it knows live in a location with suitable radio conditions that can support Gigabit speeds.

dave ask

Newsfeed

Vivo is selling new the iQOO 5G premium quality phone for US$536.

Lei Jun Xiaomi "5G to have explosive growth starting from Q2 2020"5G to have explosive growth starting from Q2 2020" I say sooner

Verizon CEO Ronan Dunne: >1/2 VZ 5G "will approximate to a good 4G service" Midband in "low hundreds" Mbps

CFO John Stephens says AT&T is going to cut capex soon.

Bharti in India has lost 45M customers who did not want to pay the minimum USS2/month. It's shutting down 3G to free some spectrum for 4G. It is cutting capex, dangerous when the 12 gigabytes/month of use continues to rise.

Huawei in 16 days sold 1,000,000 5G Mate 20s.  

China has over 50,000 upgraded base stations and may have more than 200,000 by yearend 2019. The growth is astonishing and about to accelerate. China will have more 5G than North America and Europe combined for several years.

5G phone prices are down to $580 in China from Oppo. Headed under $300 in 2020 and driving demand.

No one believed me when I wrote in May, 90% of Huawei U.S. purchases can be rapidly replaced and that Huawei would survive and thrive. Financial results are in, with 23% growth and increased phone sales. It is spending $17B on research in 2019, up > 10%. 

5G phones spotted from Sharp and Sony

NTT DOCOMO will begin "pre-commercial service Sept 20 with over 100 live bases. Officially, the commercial start is 2020.

 More newsfeed

----------

Welcome  1,800,000 Koreans bought 5G in the first four months. The demand is there, and most of the technology works. Meanwhile, the hype is unreal. Time for reporting closer to the truth.

The estimates you hear about 5G costs are wildly exaggerated. Verizon is building the most advanced wireless network while reducing capex. Deutsche Telekom and Orange/France Telecom also confirm they won't raise capex.

Massive MIMO in either 4G or "5G" can increase capacity 3X to 7X, including putting 2.3 GHz to 4.2 GHz to use. Carrier Aggregation, 256 QAM, and other tools double and triple that. Verizon sees cost/bit dropping 40% per year.

Cisco & others see traffic growth slowing to 30%/year or less.  I infer overcapacity almost everywhere.  

Believe it or not, 80+% of 5G (mid-band) for several years will be slower than good 4G, which is more developed.